Table 2. Bond lengths (Å) and angles (°) with e.s.d.'s in parentheses

|                                         | -                          |                                                  |                           |
|-----------------------------------------|----------------------------|--------------------------------------------------|---------------------------|
| Cu-O(2 <sup>i</sup> )                   | 1.894 (6)                  | Si(3)—O(10 <sup>i</sup> )                        | 1.593 (4)                 |
| Cu-O(3 <sup>v</sup> )                   | 1.961 (6)                  | Si(4)—O(6 <sup>iii</sup> )                       | 1.619 (7)                 |
| Cu-O(3 <sup>ii</sup> )                  | 1.965 (5)                  | $Si(4) \rightarrow O(8^{xiii})$                  | 1.551 (7)                 |
| CuO(8 <sup>iii</sup> )                  | 1.895 (7)                  | $Si(4) \rightarrow O(9^{xiii})$                  | 1.653 (6)                 |
| Si(1)—Ò(2 <sup>iii</sup> )              | 1.574 (6)                  | Si(4)-O(12)                                      | 1.608 (4)                 |
| $Si(1) \rightarrow O(4^{xii})$          | 1.637 (7)                  | $Rb(1) \rightarrow O(2) \times 2^{i}$            | 3.010 (7)                 |
| Si(1)—O(7 <sup>iii</sup> )              | 1.637 (7)                  | $Rb(1) \rightarrow O(2) \times 2^{iv,ix}$        | 3.164 (7)                 |
| $Si(1) - O(11^{i})$                     | 1.621 (4)                  | $Rb(1) \rightarrow O(4) \times 2^{*,iii}$        | 3.111 (7)                 |
| Si(2) - O(1)                            | 1.613 (3)                  | $Rb(1) \rightarrow O(8) \times 2^{ix}$           | 3.180 (7)                 |
| $Si(2) \rightarrow O(3^{xiii})$         | 1.597 (6)                  | $Rb(2) \rightarrow O(6) \times 2^{vi,vii}$       | 3.294 (7)                 |
| $Si(2) \rightarrow O(7^{ix})$           | 1.629 (6)                  | $Rb(2) \rightarrow O(7) \times 2^{i,iii}$        | 3.041 (7)                 |
| $Si(2) - O(9^{x^{v}})$                  | 1.628 (6)                  | $Rb(2) - O(9) \times 2^{x.xi}$                   | 3.131 (7)                 |
| Si(3) - O(4)                            | 1.592 (6)                  | $Rb(2) \rightarrow O(9) \times 2^{ii,viii}$      | 3.097 (7)                 |
| $Si(3) \rightarrow O(5^{xiy})$          | 1.577 (3)                  | $Rb(2) - O(10^{xi})$                             | 3.092 (13)                |
| $Si(3) \rightarrow O(6^{xvi})$          | 1.610 (7)                  | $Rb(2) \rightarrow O(12^{*})$                    | 3.246 (13)                |
|                                         |                            |                                                  |                           |
| $O(2^i)$ — $Cu$ — $O(3^v)$              | 95.9 (2)                   | $O(3^{xm})$ —Si(2)— $O(9^{xv})$                  | ) 111.5 (3)               |
| $O(2^{i})$ -Cu-O(8 <sup>in</sup> )      | 92.0 (3)                   | $O(7^{1x})$ — $Si(2)$ — $O(9^{xv})$              | 106.4 (4)                 |
| $O(3^{ii})$ — $Cu$ — $O(3^{v})$         | 79.1 (2)                   | $O(4) - Si(3) - O(5^{x_1 y})$                    | 111.3 (3)                 |
| $O(3^{ii})$ — $Cu$ — $O(8^{iii})$       | 94.9 (3)                   | $O(4) - Si(3) - O(6^{xvi})$                      | 112.1 (4)                 |
| $O(2^{iii})$ —Si(1)—O(4*                | <sup>ii</sup> ) 108.4 (4)  | $O(4)$ — $Si(3)$ — $O(10^{i})$                   | 109.0 (5)                 |
| $O(2^{iii})$ —Si(1)—O(7 <sup>ii</sup> ) | <sup>ii</sup> ) 112.3 (3)  | $O(5^{xiv})$ — $Si(3)$ — $O(6^{xv})$             | <sup>i</sup> ) 108.7 (3)  |
| O(2 <sup>iii</sup> )—Si(1)—O(1)         | l <sup>i</sup> ) 115.1 (5) | $O(5^{xiv})$ — $Si(3)$ — $O(10^{i})$             | ) 109.7 (5)               |
| $O(4^{xii})$ — $Si(1)$ — $O(7)$         | <sup>iii</sup> ) 107.8 (3) | O(6 <sup>xvi</sup> )—Si(3)—O(10 <sup>i</sup>     | ) 105.9 (6)               |
| $O(4^{xii})$ —Si(1)—O(1                 | 1 <sup>i</sup> ) 106.3 (4) | O(6 <sup>iii</sup> )—Si(4)—O(8 <sup>xiii</sup> ) | ) 114.0 (4)               |
| O(7 <sup>iii</sup> )—Si(1)—O(11         | l <sup>i</sup> ) 106.6 (4) | O(6 <sup>iii</sup> )—Si(4)—O(9 <sup>xiii</sup> ) | ) 103.9 (3)               |
| O(1)—Si(2)—O(3 <sup>xiii</sup>          | ) 113.2 (5)                | O(6 <sup>iii</sup> )—Si(4)—O(12)                 | 106.4 (6)                 |
| $O(1)$ — $Si(2)$ — $O(7^{ix})$          | 107.5 (4)                  | O(8 <sup>xiii</sup> )—Si(4)—O(9 <sup>xii</sup>   | <sup>ii</sup> ) 112.1 (4) |
| O(1)-Si(2)-O(9**                        | ) 107.4 (5)                | O(8 <sup>xiii</sup> )—Si(4)—O(12                 | ) 116.5 (6)               |
| $O(3^{xiii})$ —Si(2)—O(7                | <sup>ix</sup> ) 110.6 (4)  | O(9 <sup>xiii</sup> )—Si(4)—O(12                 | ) 102.6 (5)               |

Symmetry code: (i) 1 - x,  $-\frac{1}{2} + y$ , 1 - z; (ii) x,  $\frac{1}{2} - y$ , 1 + z; (iii) 1 - x, 1 - y, 1 - z; (iv) 1 - x, 2 - y, 1 - z; (v) 1 - x,  $\frac{1}{2} + y$ , 1 - z; (vi) -1 + x, -1 + y, z; (vii) -1 + x,  $\frac{3}{2} - y$ , z; (viii) -x, 1 - y, 1 - z; (ix) x,  $\frac{3}{2} - y$ , z; (x) x, y, 1 + z; (xi) -x,  $-\frac{1}{2} + y$ , 1 - z; (xii) 1 - x, -y, 1 - z; (xiii) x,  $\frac{1}{2} - y$ , z; (xiv) 1 + x, y, z; (xv) 1 - x, 1 - y, -z; (xvi) x, -1 + y, z.

repeating unit along the shortest period of the cell.  $CuO_4$  squares share corners with SiO<sub>4</sub> tetrahedra. Two kinds of Rb atom site have eight and ten nearest O-atom neighbours, respectively, and are located in the cavity of the six-membered rings.

The interatomic distances and bond angles are listed in Table 2. Si—O and Cu—O distances agree with previous data (Kawamura & Kawahara, 1976,

1977; Kawamura, Kawahara & Iiyama, 1978; Kawamura & Iiyama, 1981; Heinrich & Gramlich, 1982). In the SiO₄ double sheets, the bridging Si-O distance to other Si atoms (mean 1.626 Å) is significantly longer than those to Cu and Rb atoms (mean 1.578 Å). The average Si—O distances for the four SiO<sub>4</sub> tetrahedra are 1.617, 1.617, 1.593 and 1.608 Å, and the distortion indices,  $[d(M - O)_{max} - d(M - O)_{max}]$  $O_{min}/(d(M-O))$ , of SiO<sub>4</sub> tetrahedra (Liebau, 1985) are  $3.92 \times 10^{-2}$ ,  $1.98 \times 10^{-2}$ ,  $2.02 \times 10^{-2}$  and  $6.34 \times 10^{-2}$ , respectively. The bonding of SiO<sub>4</sub> tetrahedra and CuO<sub>4</sub> squares is directional and rigid compared with Rb-O polyhedra, which are irregular in shape and have ionic character. Accordingly, the latter are considered to compensate for all the strains resulting from the framework constructed by these rigid and rather covalent  $sp^3$  tetrahedra of SiO<sub>4</sub> and the  $dsp^2$  planar CuO<sub>4</sub> squares. Here the alkali metals may play an important role in the stabilization of the structure. In fact, the number of phases containing  $A_x Cu_y Si_p O_q$  (A = alkali metal) is much larger than that containing only  $Cu_x Si_p O_q$ .

#### References

- HEINRICH, A. & GRAMLICH, V. (1982). Naturwissenschaften, 69, 142–143.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- KAWAMURA, K. & IIYAMA, J. T. (1981). Bull. Miner. 104, 387–395.
- KAWAMURA, K. & KAWAHARA, A. (1976). Acta Cryst. B32, 2419– 2422.
- KAWAMURA, K. & KAWAHARA, A. (1977). Acta Cryst. B33, 1071– 1075.
- KAWAMURA, K., KAWAHARA, A. & IIYAMA, J. T. (1978). Acta Cryst. B34, 3181-3185.
- LIEBAU, F. (1985). Structural Chemistry of Silicates, pp. 69-75, 121-126, 232, 250, 267. Berlin: Springer.
- SAKURAI, T. (1971). Editor. The Universal Crystallographic Computation Program System. Tokyo: The Crystallographic Society of Japan.

#### Acta Cryst. (1993). C49, 856-861

### Structure of Potassium Paradodecatungstate 7<sup>1</sup>/<sub>2</sub>-Hydrate

#### BY HOWARD T. EVANS JR

US Geological Survey, Reston, Virginia 22092, USA

#### AND ULI KORTZ AND GEOFFREY B. JAMESON

Department of Chemistry, Georgetown University, Washington, DC 20057, USA

(Received 26 September 1991; accepted 16 November 1992)

**Abstract.**  $K_{10}[H_2W_{12}O_{42}].7\frac{1}{2}H_2O$ ,  $M_r = 3406.3$ , triclinic,  $P\bar{1}$ , a = 13.126 (2), b = 16.274 (7),  $c = \lambda(Mo \ K\alpha) = 0.7107$  Å,  $\mu = 280.5$  cm<sup>-1</sup>, F(000) = 11.756 (4) Å,  $\alpha = 96.77$  (2),  $\beta = 90.04$  (2),  $\gamma = 2982$ , T = 296 K, R = 0.051, wR = 0.067 and S = 10.274 (7), c = 10.27

0108-2701/93/050856-06\$06.00 © 1993 International Union of Crystallography

2.20 for 7588 observed reflections with  $2\theta < 52^{\circ}$ . Two independent polyanions are present centered at 0,0,0 and  $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ . The crystal is isostructural with that previously reported for  $(NH_4)_6H_6W_{12}O_{42}.10H_2O$ , but evidently four NH<sub>4</sub> groups were misidentified as H<sub>2</sub>O molecules, and the ammonium compound should be written as  $(NH_4)_{10}[H_2W_{12}O_{42}].6(\text{or }7\frac{1}{2})H_2O$ .

**Introduction.** In an approach to a metadodecatungstate synthesis (Flynn & Pope, 1973), a solution of  $K_2WO_4$  lightly acidified with acetic acid (pH 4–5) deposited large clear tabular crystals. These have been found by crystal structure analysis to be a paradodecatungstate salt,  $K_{10}[H_2W_{12}O_{42}].7\frac{1}{2}H_2O$ . The structure turned out to be closely isotypic with the previously reported structure of  $(NH_4)_6H_6W_{12}$ - $O_{42}.10H_2O$  (Averbuch-Pouchot, Tordjman, Durif & Guitel, 1979), indicating that the chemistry of the latter needs to be revised.

**Experimental.** The structure of the crystal defined in Table 1 was solved and refined independently from two different data sets, one at US Geological Survey, and the other at Georgetown University; each study was undertaken unknown to the other until after the refinements were completed. Different techniques of data collection and refinement were used in each case, but the results obtained in the latter study, which gave lower coordinate standard deviations and better internal consistency, are those reported in detail here.

The triclinic unit-cell dimensions given in Table 1 (and the orientation matrix) were obtained by leastsquares refinement of the setting angles for 19 carefully centered reflections in the  $2\theta$  range 25–27°. The crystal used for structure analysis was a very thin plate,  $0.25 \times 0.60 \times 0.015$  mm in dimensions. Graphite-monochromated Mo  $K\alpha$  radiation was used to measure intensity data in one hemisphere of the reciprocal sphere bounded by  $2\theta = 52^{\circ}$ . Of these intensity data, 7588 with  $I > 5.0\sigma(I)$  were used for the structure analysis. Lorentz and polarization corrections were applied to the data, and anomalousdispersion corrections were applied to the atomic scattering factors. Empirical absorption corrections were computed from  $\psi$  scans of four reflections, and also by the internal empirical method of Walker & Stuart (1983) using the program DIFABS during refinement. The latter method appeared to lead to improved results, which are reported here. Other diffraction parameters are listed in Table 2.

Application of MULTAN11/82 (Main *et al.*, 1982), as incorporated in the Enraf–Nonius *MolEN* package (Fair, 1990), led directly to a valid structure dominated by two of the familiar paradodecatung-state polyanions, one at the center of inversion at the origin, the other at the center of inversion at  $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ .

 Table 1. Crystallography of potassium and ammonium paradodecatungstates

|                                     | $K_{10}[H_2W_{12}O_{42}].7\frac{1}{2}H_2O$ | (NH <sub>4</sub> ) <sub>10</sub> [H <sub>2</sub> W <sub>12</sub> O <sub>42</sub> ].6H <sub>2</sub> O* |
|-------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Formula weight                      | 3415.3                                     | 3186.7                                                                                                |
| Space group                         | PĪ                                         | РĪ                                                                                                    |
| Unit cell                           |                                            |                                                                                                       |
| a (Å)                               | 13.126 (2)                                 | 13.21 (1)                                                                                             |
| b (Å)                               | 16.274 (7)                                 | 16.63 (1)                                                                                             |
| c (Å)                               | 11.756 (4)                                 | 11.94 (2)                                                                                             |
| α (°)                               | 96.77 (2)                                  | 97.31 (5)                                                                                             |
| β(')                                | 90.04 (2)                                  | 91.39 (5)                                                                                             |
| γ()                                 | 77.77 (2)                                  | 77.54 (5)                                                                                             |
| V (Å')                              | 2436.4 (4)                                 | 2540.4                                                                                                |
| Z                                   | 2                                          | 2                                                                                                     |
| Density $D_x$ (g cm <sup>-3</sup> ) | 4.65                                       | 4.17                                                                                                  |
| Data set                            |                                            |                                                                                                       |
| Total No. of reflections            | 9370                                       | 5437                                                                                                  |
| No. used in refinement              | 7588                                       | 4025                                                                                                  |
| Radiation                           | Μο Κα                                      | Ag Ka                                                                                                 |
| Absorption                          |                                            |                                                                                                       |
| $\mu$ (cm <sup>-1</sup> )           | 280.5                                      | 149.1                                                                                                 |
| Correction, range of A              | 0.12-1.00 (on F <sup>2</sup> )†            | -                                                                                                     |
|                                     | 0.83-1.17 (on F <sup>2</sup> )             |                                                                                                       |
| R                                   | 0.051                                      | 0.040                                                                                                 |
| wR                                  | 0.067                                      | -                                                                                                     |
| Goodness of fit S                   | 2.20                                       | -                                                                                                     |

\* All data for the ammonium salt were reported by Averbuch-Pouchot *et al.* (1979), who originally formulated  $(NH_4)_6H_6W_{12}O_{42}$ .10H<sub>2</sub>O. Their unit cell is transformed to the K cell by the matrix: [0,1,0/0,0,-1/-1,0,0].

 $\dagger$  Based on  $\psi$  scans.

‡ From DIFABS (Walker & Stuart, 1983).

 Table 2. Experimental diffraction and refinement parameters

| Diffractometer                                             | Extensively modified Picker 4-circle                            |
|------------------------------------------------------------|-----------------------------------------------------------------|
| Range of h                                                 | - 15→15                                                         |
| - k                                                        | - 19 → 20                                                       |
| 1                                                          | - 14 → 0                                                        |
| 2 <b>0</b> (``)                                            | 4.0 → 52                                                        |
| Standard reflections                                       | 500, 020, 002                                                   |
| Variation of standards (%)                                 | ± 2                                                             |
| Refinement mode                                            | Full matrix on F                                                |
| Number of parameters refined                               | 407                                                             |
| Quantity minimized                                         | $\sum w \Delta F^2$                                             |
| Weighting scheme, based on modified counting statistics    | $w = 1/\sigma^2(F), \ \sigma^2(F) = \sigma_{us}^2 + 0.04 \ F^2$ |
| Maximum shift/e.s.d.                                       | 0.07                                                            |
| Maximum and minimum in final difference map (e Å $^{-3}$ ) | 2.8, -0.8                                                       |

Electron density and difference Fourier maps revealed ten sharp intermolecular peaks, which were assigned to K atoms, thus completing the charge balance within the crystal. Ten further peaks were assigned to water molecules. One, Aq(5), was very weak, so that partial occupancy was strongly suggested; it was assigned a fixed occupancy of 0.5. Four other weak peaks in neighboring pairs were assumed to represent two water molecules, Aq(7) and Aq(8), each split with one-half occupancy between two adjacent sites designated a and b. The final atomic coordinates and mean isotropic thermal vibrations are listed in Table 3.\* Atomic scattering factors used

<sup>\*</sup> Lists of anisotropic thermal parameters and observed and calculated structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55796 (90 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: GR0197]

# Table 3. Atomic coordinates and thermal parameters $(\text{\AA}^2)$ for $K_{10}[H_2W_{12}O_{42}].7\frac{1}{2}H_2O$

O atoms were refined isotropically.  $\overline{U}$  is the r.m.s. thermal displacement. Non-labile H atoms H(100) and H(200) were symmetrically located between O(x08) and O(x13) (x = 1, 2), 0.97 Å from O(x07) (Evans & Prince, 1983). These atoms were not included in the refined model. Corresponding atom designations of Averbuch-Pouchet *et al.* (1979) for the ammonium salt are listed in the last column (NH<sub>4</sub>).

|                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | У            | z                    | U         | (NH₄)               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|-----------|---------------------|
| Molecule         | A at 0,0,0 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 series)   |                      |           |                     |
| W(101)           | -0.06800 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.11116 (4)  | 0.20593 (4)          | 0.122 (5) | W(12)               |
| W(102)           | 0.16913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.00486     | 0.23997              | 0.128     | W(4)<br>W(11)       |
| W(103)<br>W(104) | -0.30599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11/5/      | 0.02963              | 0.120     | W(10)               |
| W(105)           | - 0.04279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 0.12090    | 0.26977              | 0.130     | W(1)                |
| W(106)           | -0.28314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.01131     | 0.23223              | 0.135     | W(6)                |
| O(101)           | 0.031 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1745 (8)   | 0.149 (1)            | 0.14 (2)  | O(26)               |
| O(102)           | 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0732       | 0.311                | 0.16      | O(21)               |
| O(103)           | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0765       | 0.168                | 0.16      | O(25)               |
| O(104)           | -0.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1881       | 0.311                | 0.16      | O(8)                |
| O(105)           | 0.255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0211      | 0.350                | 0.15      | O(13)               |
| O(107)           | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0198       | 0.095                | 0.14      | O(24)               |
| O(108)           | - 0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1234       | 0.083                | 0.15      | O(4)                |
| O(109)           | -0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0145       | 0.248                | 0.14      | O(1)                |
| O(110)           | 0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.0920     | 0.262                | 0.14      | 0(10)               |
| O(112)           | 0.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0228       | -0.051               | 0.14      | O(17)<br>O(32)      |
| O(113)           | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1234       | -0.085               | 0.16      | O(37)               |
| O(114)           | 0.320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.1022      | -0.191               | 0.13      | O(3)                |
| O(115)           | -0.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.1168      | 0.240                | 0.15      | O(35)               |
| O(116)           | -0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.1002      | 0.419                | 0.16      | O(34)               |
| O(117)           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.2311     | 0.255                | 0.18      | O(38)               |
| O(118)<br>O(119) | -0.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0782       | -0.019               | 0.17      | O(42)<br>O(16)      |
| O(120)           | - 0.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0198       | 0.380                | 0.17      | O(2)                |
| O(121)           | -0.395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0468      | 0.196                | 0.18      | O(40)               |
| H(100)           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.061        | 0.055                |           |                     |
| Molecule         | $R_{at} = \frac{1}{1} 1$ | ( series)    |                      |           |                     |
| WORLD            | D at 2,2,2 (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 47406 (4)  | 0 47600 (5)          | 0.12 (1)  | W/(9)               |
| W(201)<br>W(202) | 0.72419(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.47430 (4)  | 0.47116              | 0.12 (1)  | W(7)                |
| W(203)           | 0.54734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.50337      | 0.26799              | 0.12      | W(2)                |
| W(204)           | 0.33157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.70103      | 0.36477              | 0.13      | W(5)                |
| W(205)           | 0.37072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34989      | 0.26887              | 0.13      | W(9)                |
| W(206)           | 0.26451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.54250      | 0.20688              | 0.13      | W(3)                |
| O(201)           | 0.311(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5369 (8)   | 0.687 (2)            | 0.14 (2)  | 0(36)               |
| O(202)<br>O(203) | 0.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3826       | 0.722                | 0.15      | O(30)               |
| O(204)           | 0.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5641       | 0.535                | 0.15      | O(7)                |
| O(205)           | 0.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5199       | 0.879                | 0.16      | O(6)                |
| O(206)           | 0.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2405       | 0.611                | 0.17      | O(33)               |
| O(207)           | 0.439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4497       | 0.543                | 0.12      | O(31)               |
| O(208)<br>O(209) | 0.320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0130       | 0.369                | 0.14      | O(22)               |
| O(210)           | 0.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3080       | 0.411                | 0.16      | O(20)               |
| O(211)           | 0.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2877       | 0.569                | 0.17      | O(12)               |
| O(212)           | 0.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4225       | 0.720                | 0.14      | O(14)               |
| O(213)           | 0.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5873       | 0.690                | 0.13      | O(30)               |
| 0(214)           | 0.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6429       | 0.313                | 0.14      | O(18)               |
| O(215)<br>O(216) | 0.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3229       | 0.251                | 0.15      | O(23)               |
| O(217)           | 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2713       | 0.181                | 0.17      | O(27)               |
| O(218)           | 0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7790       | 0.456                | 0.16      | O(11)               |
| O(219)           | 0.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7475       | 0.241                | 0.16      | O(15)               |
| O(220)           | 0.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5160       | 0.191                | 0.16      | O(29)               |
| U(221)<br>H(200) | 0.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5904       | 0.083                | 0.18      | 0(9)                |
| 11(200)          | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.510        | 0.501                |           |                     |
| Intermole        | cular cation a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and water mo | olecules             |           |                     |
| <b>K(</b> 1)     | 0.1295 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9282 (3)   | 0.5139 (3)           | 0.16 (1)  | NH4(1)              |
| K(2)             | 0.1676 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7559 (3)   | 0.0918 (4)           | 0.19 (1)  | NH₄(2)              |
| K(3)             | 0.1701 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3690 (3)   | 0.0347 (3)           | 0.21 (1)  | NH₄(3)              |
| K(4)<br>K(5)     | 0.0055 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7201 (3)   | 0.4/3/(4)            | 0.18(1)   | NH.(5)              |
| K(6)             | 0.0673 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4391 (3)   | 0.3649 (4)           | 0.20 (1)  | NH <sub>4</sub> (6) |
| K(7)             | 0.4071 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1040 (5)   | 0.1023 (6)           | 0.27 (2)  | O(W6)               |
| K(8)             | 0.4543 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8718 (4)   | 0.2468 (5)           | 0.23 (1)  | O( <i>W</i> 9)      |
| K(9)             | 0.2489 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1259 (3)   | 0.5032 (4)           | 0.20 (1)  | O(W5)               |
| K(10)            | 0.4788 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6428 (3)   | 0.0349 (4)           | 0.21 (1)  | $O(W^1)$            |
| Aq(1)            | 0.125(1)<br>0.065(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.241 (1)    | 0.572(1)<br>0.624(1) | 0.23 (4)  | O(W3)               |
| Aq(3)            | 0.360 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.254 (2)    | 0.878 (2)            | 0.30 (6)  | O( <i>W</i> 4)      |



|         | x          | y         | z         | $\overline{U}$ | (NH₄) |
|---------|------------|-----------|-----------|----------------|-------|
| Aa(4)   | 0.000 (2)  | 0.642 (1) | 0.823 (2) | 0.27 (5)       | O(W7) |
| Aq(5a)* | 0.190 (3)  | 0.509 (2) | 0.889 (3) | 0.23 (7)       | O(W8) |
| Aq(6)   | 0.411 (2)  | 0.128 (1) | 0.346 (2) | 0.27 (5)       |       |
| Aq(7a)* | 0.455 (3)  | 0.890 (2) | 0.477 (2) | 0.20 (6)       |       |
| Aq(7b)* | 0.468 (3)  | 0.956 (2) | 0.474 (3) | 0.23 (7)       |       |
| Aq(8a)* | 0.044 (3)  | 0.376 (2) | 0.854 (3) | 0.22 (7)       |       |
| Aq(8b)* | -0.013 (4) | 0.356 (3) | 0.918 (4) | 0.3            |       |

\* Occupancy 0.5.



Fig. 1. Oblique view of the paradodecatungstate ion  $[H_2W_{12}O_{42}]^{10-}$ , showing the atom-numbering system of Allmann (1971) used in this description.

were those of Cromer & Mann (1968); anomalousdispersion parameters and mass-absorption coefficients were taken from Cromer & Liberman (1970).

Discussion. In Table 3 the atoms are numbered and their sites (x, y, z) listed, corresponding to the two discrete paratungstate molecules in the unit cell. The numbering of atoms in the molecules (Fig. 1) follows the system of Allmann (1971). Atoms of molecule A centered at 0,0,0 are in the 100 series, and those of molecule *B* centered at  $\frac{1}{2}$ ,  $\frac{1}{2}$ ,  $\frac{1}{2}$  are in the 200 series. The determined bond lengths are listed in Table 4, interatomic distances involving intermolecular cations and water molecules in Table 5, and principal W.W and W…center distances in Table 6. The variations among these various distances, all within a closely similar environment, give a good impression of the degree of flexibility and strain that the paradodecatungstate molecule can tolerate. There is still no evidence for any departure from 2/m symmetry for the free molecule.

The positions of the internal non-labile H atoms in the center of the paradodecatungstate molecule, which are predicted in Table 3, have been directly demonstrated by neutron diffraction in the compound  $(NH_4)_{10}[H_2W_{12}O_{42}].4H_2O$  by Evans & Prince (1983).

Table 4. Bond lengths W—O (Å) in  $K_{10}[H_2W_{12}O_{42}]$ .7<sup>1</sup>/<sub>2</sub> $H_2O$  compared with those in the corresponding ammonium salt

Bonds in the right-hand groups are related to those in the left-hand groups by the molecular pseudo-mirror plane. E.s.d.'s are  $\pm 0.01$  Å for the K salt,  $\pm 0.02$  Å for the NH<sub>4</sub> salt.

|                 | K          | salt       | NH         | ₄ salt     |                 | К          | salt       | NH         | salt       |
|-----------------|------------|------------|------------|------------|-----------------|------------|------------|------------|------------|
|                 | Molecule A | Molecule B | Molecule A | Molecule B |                 | Molecule A | Molecule B | Molecule A | Molecule B |
|                 | x = 1      | x = 2      | x = 1      | x = 2      |                 | x = 1      | x = 2      | x = 1      | x = 2      |
| W(x01) - O(x04) | 1.73       | 1.74       | 1.74       | 1.76       | W(x03) - O(x05) | 1.70       | 1.72       | 1.78       | 1.72       |
| -O(x08)         | 1.80       | 1.78       | 1.79       | 1.80       | -O(x13)         | 1.82       | 1.86       | 1.84       | 1.84       |
| O(x09)          | 1.90       | 1.90       | 1.89       | 1.88       | O(x12)          | 1.91       | 1.94       | 1.96       | 1.91       |
| O(x01)          | 1.98       | 1.97       | 1.97       | 2.00       | O(x01)          | 1.95       | 1.93       | 1.97       | 1.95       |
| O(x02)          | 2.09       | 2.12       | 2.11       | 2.14       | -O(x03)         | 2.06       | 2.07       | 2.08       | 2.07       |
| O(x07)          | 2.25       | 2.26       | 2.20       | 2.26       | O(x07)          | 2.26       | 2.28       | 2.27       | 2.28       |
| W(x02)—O(x06)   | 1.72       | 1.72       | 1.73       | 1.77       |                 |            |            |            |            |
| O(x03)          | 1.86       | 1.83       | 1.89       | 1.85       |                 |            |            |            |            |
| O(x02)          | 1.85       | 1.85       | 1.89       | 1.85       |                 |            |            |            |            |
| -O(x11)         | 1.91       | 1.96       | 1.91       | 1.98       |                 |            |            |            |            |
| -O(x10)         | 1.98       | 1.96       | 1.97       | 1.94       |                 |            |            |            |            |
| O(x07)          | 2.28       | 2.28       | 2.25       | 2.26       |                 |            |            |            |            |
| W(x04)—O(x18)   | 1.74       | 1.73       | 1.66       | 1.75       | W(x05)—O(x17)   | 1.75       | 1.71       | 1.74       | 1.75       |
| -O(x19)         | 1.74       | 1.74       | 1.77       | 1.73       | O(x16)          | 1.75       | 1.75       | 1.77       | 1.79       |
| -O(x11)         | 1.92       | 1.89       | 1.91       | 1.91       | -O(x10)         | 1.89       | 1.89       | 1.89       | 1.90       |
| O(x14)          | 1.96       | 1.94       | 1.91       | 1.91       | O(x15)          | 1.93       | 1.96       | 1.97       | 1.93       |
| -O(x08)         | 2.21       | 2.25       | 2.21       | 2.20       | O(x13)          | 2.17       | 2.15       | 2.15       | 2.18       |
| O(x12)          | 2.25       | 2.18       | 2.16       | 2.23       | -O(x09)         | 2.24       | 2.26       | 2.25       | 2.26       |
| W(x06)—O(x20)   | 1.75       | 1.74       | 1.74       | 1.70       |                 |            |            |            |            |
| O(x21)          | 1.72       | 1.76       | 1.76       | 1.70       |                 |            |            |            |            |
| O(x14)          | 1.93       | 1.92       | 1.93       | 1.95       |                 |            |            |            |            |
| O(x15)          | 1.91       | 1.91       | 1.90       | 1.95       |                 |            |            |            |            |
| O(x12)          | 2.23       | 2.25       | 2.24       | 2.23       |                 |            |            |            |            |
| 0(x09)          | 2.39       | 2.31       | 2 41       | 2.35       |                 |            |            |            |            |

When the potassium paradodecatungstate structure is compared with that of the ammonium salt  $(NH_4)_6H_6W_{12}O_{42}.10H_2O$ , whose structure was reported by Averbuch-Pouchot et al. (1979), the unit-cell parameters are found to be similar within 2% (Table 1). Furthermore, nearly all the atomic coordinates, after suitable transformation, are closely analogous. The main difference lies in the number of counterions present: Averbuch-Pouchot et al. (1979) found six NH<sub>4</sub><sup>+</sup> ions and postulated the presence of four H<sup>+</sup> ions to balance the charge of the polyanion  $[H_2W_{12}O_{42}]^{10^-},$  while in the present study a full complement of 10 K  $^+$  ions was found. The four additional K<sup>+</sup> ions in this crystal correspond to four of the water molecules reported for the ammonium compound. Since it is not possible in structures of this type (dominated by the heavy W scatterers) to distinguish between N and O atoms, it must be concluded that Averbuch-Pouchot et al. (1979) misidentified four of the NH<sub>4</sub> groups as H<sub>2</sub>O molecules. When this substitution is made a much more even distribution of counterions around the polyanions is found. The addition of extra H<sup>+</sup> ions is thus unnecessary, and the ammonium compound should probably be reformulated as  $(NH_4)_{10}[H_2W_{12}]$  $O_{42}$ ].6H<sub>2</sub>O (or  $7\frac{1}{2}$ H<sub>2</sub>O). The paradodecatungstate complex would hardly be stable in the presence of so many free protons.

Every atom listed for the ammonium compound by Averbuch-Pouchot et al. (1979) corresponds to an atom in the K compound except for O(W10), which could not be found in the electron density map of the K salt. Rather, five additional peaks were found which are labeled Aq(6), Aq(7a,b) and Aq(8a,b). As reported above, Aq(7) and Aq(8) were found to be split into two closely spaced pairs of peaks of half height. Aq(7a) and Aq(7b) are separated by 1.13 Å, and Aq(8a) and Aq(8b) are separated by 1.18 Å. The Aq(7b) site approaches its symmetry equivalent at 1.85 Å. The closest approach of any of these four sites to any other atoms is K(8)...Aq(7a), 2.69 Å. The K atoms all have seven to nine O-atom contacts between 2.62 and 3.25 Å, in a manner typical for this highly polarizable cation (Table 5). Several  $H_2O(Aq)$ contacts (Table 5) indicate the presence of a system of hydrogen bonds, but no attempt is made to interpret their contribution to the stability of the structure. There are six different O…O contacts less than 3.5 Å between neighboring paradodecatungstate molecules in the unit cell.

The structure of the K compound has been shifted by b/2 from that of the ammonium compound (Averbuch-Pouchot *et al.*, 1979). Atom coordinates of Averbuch-Pouchot *et al.* (1979) are converted to the present setting by the formulae:  $x_{\rm K} = y_{\rm A}$ ;  $y_{\rm K} =$  $-z_{\rm A} + 0.5$ ;  $z_{\rm K} = -x_{\rm A}$ , where subscript K denotes the present structure and subscript A denotes the ammonium salt. Interatomic distances in the molecules in the ammonium salt are compared with those in the K salt in Table 4.

## Table 5. Interatomic distances (Å) for intermolecular potassium and water in $K_{10}[H_2W_{12}O_{42}]$ .7<sup>1</sup>/<sub>2</sub> $H_2O$

A primed atom label indicates an atom symmetrically related to a previously listed atom.

| Potassium, K. | ··O,Aq distance | es to 3.3 Å, ±0.01 Å e | except where n | oted           |          |                                                             |          |
|---------------|-----------------|------------------------|----------------|----------------|----------|-------------------------------------------------------------|----------|
| K(1)…O(218)   | 2.61            | K(2)…O(118)            | 2.85 (2)       | K(3)····Aq(8a) | 2.69 (4) | K(4)…O(204)                                                 | 2.73     |
| ···O(120)     | 2.79 (2)        | ···O(221)              | 2.77 (2)       | ···O(105)      | 2.75 (2) | ···O(214)                                                   | 2.86     |
| ···O(109)     | 2.84            | ···O(11)               | 2.87           | ···Aq(8b)      | 2 80 (5) | ···A(2)                                                     | 2 84 (2) |
| ···O(116)     | 2.77            | ···O(117)              | 2.87 (2)       |                | 2.80     |                                                             | 2 03 (2) |
| ···O(106)     | 2.84            | ···O(219)              | 2 90           | ··· A ((4)     | 2.87 (2) |                                                             | 2.75 (2) |
| ···O(116)     | 2 84 (2)        | ···· A a(8b)           | 2.99 (6)       | ····O(216)     | 2.07 (2) | ···· (11/)                                                  | 2.05     |
| ···O(104)     | 2.95            |                        | 2.99 (0)       | ···· A g(5)    | 3.06 (4) |                                                             | 2.00 (2) |
|               | 3.00            | O(110)                 | 2.90           |                | 3.07     |                                                             | 2.14     |
| ···O(102)     | 3.21            | ···O(113)              | 3.01           | ···Aq(3)       | 3.21 (3) |                                                             | 5.14     |
| K(5)…O(114)   | 2.73            | K(6)Aq(4)              | 2 68 (2)       | K(7)O(119)     | 2 62 (2) | $\mathbf{K}(8)$ , $\mathbf{A}_{\mathbf{C}}(7_{\mathbf{C}})$ | 2 60 (3) |
| ···O(213)     | 2.86            | ···O(220)              | 2.80           | O(103)         | 2.02(2)  | O(121)                                                      | 2.09 (3) |
| ···O(208)     | 2.89            | ····Aq(2)              | 2.89 (2)       | ···· A c(6)    | 2.17 (2) |                                                             | 2.71 (2) |
| ···O(104)     | 2 83 (2)        |                        | 2.07 (2)       |                | 2.03 (2) |                                                             | 2.71 (2) |
|               | 3.05 (2)        |                        | 3.00           | ····O(217)     | 2.74 (2) |                                                             | 3.10     |
|               | 3.09            |                        | 3.00           | ···O(119)      | 2.96 (2) | ····O(119)                                                  | 2.90     |
|               | 3 22            |                        | 3.00           | 0(105)         | 5.05 (2) | ····Aq(70)                                                  | 2.00 (3) |
| ···O(211)     | 3 30            | ··· <b>A</b> o(2)'     | 3 22 (2)       |                |          | ····Aq(3)                                                   | 3.08 (3) |
| 0(211)        | 5.50            | ···Aq(1)               | 3.16 (2)       |                |          | O(100)                                                      | 2.99     |
| K(9)O(116)    | 2 76 (2)        | K(10)O(205)            | 2 70           |                |          |                                                             |          |
| ····O(206)    | 2.70(2)         | ···O(118)              | 2.70           |                |          |                                                             |          |
| ···O(106)     | 2.81            | ···O(205)              | 2.95           |                |          |                                                             |          |
| ···O(120)     | 2.84 (2)        |                        | 2.99 (2)       |                |          |                                                             |          |
| ···An(1)      | 2 83 (2)        |                        | 3 10           |                |          |                                                             |          |
| ···A(6)       | 2.03 (2)        |                        | 3.07 (3)       |                |          |                                                             |          |
| ···O(115)     | 3.15            |                        | 3.07 (5)       |                |          |                                                             |          |
| 0(110)        | 5.15            | ····O(205)             | 3.15           |                |          |                                                             |          |
|               |                 |                        | 3.13           |                |          |                                                             |          |
|               |                 |                        | 3.27 (2)       |                |          |                                                             |          |
| Water molecul | es, Aq—O,Aq     | distances to 3.3 Å     |                |                |          |                                                             |          |
| Aq(1)O(216)   | 2.81 (2)        | Aq(2)…O(202)           | 2.74 (2)       | Aq(3)…O(105)   | 3.05 (3) | Aq(4)…O(101)                                                | 2.91 (3) |
| ···O(102)     | 3.04 (2)        | ···Aq(8a)              | 2.77 (4)       | ···O(203)      | 3.09 (3) | ···Aq(8 <i>b</i> )                                          | 3.04 (5) |
| O(101)        | 3.06 (2)        | ···O(204)              | 3.29 (2)       | ···O(206)      | 3.13 (3) | ···Aq(5)                                                    | 3.10 (4) |
| Aq(5)…O(221)  | 2.87 (4)        | Aq(6)…O(210)           | 2.92 (3)       | Aq(7a)…Aq(7b)  | 2.89 (6) | Aq(7b)…O(120)                                               | 2.74 (7) |
| ···O(201)     | 2.99 (4)        | ···Aq(7a)              | 2.73 (4)       | ···O(120)      | 2.71 (4) | ···O(106)                                                   | 3.12 (4) |
| ···O(205)     | 3.26 (4)        | ···Aq(7b)              | 2.94 (4)       | ···O(106)      | 3.18 (4) | ···Aq(6)                                                    | 2.94 (4) |
| ···Aq(4)      | 3.10 (4)        | ···Aq(7b)'             | 3.27 (4)       | ···O(206)      | 3.06 (4) | ···Aq(6)'                                                   | 3.27 (4) |
| Aq(8a)        | 3.18 (6)        |                        |                | ···O(211)      | 2.86 (4) | ···Aq(7a)'                                                  | 2.89 (6) |
| Aq(8a)…O(117) | 2.72 (4)        | Aq(8b)…O(117)          | 2.68 (5)       |                |          |                                                             |          |
| ···O(220)     | 2.79 (4)        | ···O(220)              | 2.83 (5)       |                |          |                                                             |          |
| ···Aq(2)      | 2.77 (4)        | ···Aq(4)               | 3.04 (5)       |                |          |                                                             |          |
| ···Aq(5)      | 3.18 (6)        |                        |                |                |          |                                                             |          |

### Table 6. Tungsten-tungsten distances to 4.0 Å in potassium and ammonium paratungstates

Bonds in right-hand groups are related to those in left-hand groups by the molecular pseudo-mirror plane. E.s.d.'s are  $\pm 0.001$  Å for the K salt,  $\pm 0.002$  Å for the NH<sub>4</sub> salt.

|                       | K salt NH₄ salt |            | 4 salt     |            | к                | salt       | NH <sub>4</sub> salt |            |            |
|-----------------------|-----------------|------------|------------|------------|------------------|------------|----------------------|------------|------------|
|                       | Molecule A      | Molecule B | Molecule A | Molecule B |                  | Molecule A | Molecule B           | Molecule A | Molecule B |
|                       | x = 1           | x = 2      | x = 1      | x = 2      |                  | x = 1      | x = 2                | x = 1      | r = 2      |
| $W(x01)\cdots O(x02)$ | 3.332           | 3.348      | 3.325      | 3,351      | W(x03)O(x02)     | 3 325      | 3 3 30               | 3 391      | 2 2 2 2    |
| ····O(x03)            | 3.378           | 3.375      | 3.383      | 3.375      | ···O(x01)        | 3 378      | 3 375                | 3 383      | 3.326      |
| O(x04)                | 3.768           | 3.794      | 3,793      | 3,783      | ···O(x05)        | 3 714      | 3 751                | 3 688      | 3 753      |
| ···O(x05)             | 3.883           | 3.893      | 3.881      | 3.892      | ···O(r04)        | 3 901      | 3 866                | 3 8 50     | 3 975      |
| O(x06)                | 3.818           | 3.772      | 3.847      | 3.788      | ···O(x06)        | 3.697      | 3.716                | 3.704      | 3.683      |
| W(x02)O(x03)          | 3.325           | 3,339      | 3.318      | 3,328      |                  |            |                      |            |            |
| ···O(x01)             | 3.332           | 3.348      | 3.325      | 3.351      |                  |            |                      |            |            |
| ···O(x04)             | 3.665           | 3.672      | 3.661      | 3 667      |                  |            |                      |            |            |
| ···O(x05)             | 3.716           | 3.700      | 3.720      | 3.700      |                  |            |                      |            |            |
| W(x04)…O(x06)         | 3.277           | 3.272      | 3.289      | 3.270      | W(x05)O(x06)     | 3 3 36     | 3 318                | 3 334      | 3 3 7 8    |
| ···O(x02)             | 3.665           | 3.672      | 3.793      | 3.783      | ···O(x02)        | 3 716      | 3 700                | 3 720      | 3 700      |
| ···O(x01)             | 3.768           | 3,794      | 3,793      | 3,783      | ···O(x03)        | 3 714      | 3 751                | 3.689      | 3 743      |
| ···O(x03)             | 3.901           | 3.866      | 3.859      | 3.874      | ···O(x01)        | 3.882      | 3.893                | 3.882      | 3.892      |
| W(x06)…O(x04)         | 3.277           | 3.272      | 3.289      | 3.270      |                  |            |                      |            |            |
| ···O(x05)             | 3.336           | 3.315      | 3.334      | 3.328      |                  |            |                      |            |            |
| ···O(x03)             | 3.697           | 3.716      | 3.704      | 3.788      |                  |            |                      |            |            |
| ···O(x01)             | 3.818           | 3.772      | 3.847      | 3.683      |                  |            |                      |            |            |
| CenterW(x01)          | 2.866           | 2.893      | 2.869      | 2 877      | Center···W(xf13) | 2 8 3 8    | 2 807                | 2 821      | 2 0 1 5    |
| W(x02)                | 3.587           | 3.608      | 3.590      | 3,600      |                  | 2.550      | 2.307                | 2.031      | 2.015      |
| ····W(x04)            | 4.034           | 4.034      | 4.037      | 4.041      | ···W(x05)        | 4 023      | 4 052                | 4 005      | 4 0 2 0    |
| ···W(x06)             | 4.661           | 4.642      | 4.689      | 4.636      | W(X05)           | 4.025      | 4.052                | 4.005      | 4.039      |

ALLMANN, R. (1971). Acta Cryst. B27, 1393-1404.

- AVERBUCH-POUCHOT, M. T., TORDJMAN, I., DURIF, A. & GUITEL, J. C. (1979). Acta Cryst. B35, 1675–1677.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- EVANS, H. T. JR & PRINCE, E. (1983). J. Am. Chem. Soc. 104, 4838-4839.
- FAIR, C. K. (1990). *MolEN*. An interactive intelligent system for crystal-structure analysis. Enraf-Nonius, Delft, The Netherlands.
- FLYNN, C. M. JR & POPE, M. T. (1973). Inorg. Chem. 12, 1626–1634.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 861-865

# Structures of Tetrakis(2-amino-6-methylpyridinium) *catena*-Bis(acetonitrile)tetradeca- $\mu$ -chloro-pentanickelate(II) and Bis(3-picolinium) *catena*-Diaquaocta- $\mu$ -chloro-trinickelate(II)

BY MARCUS R. BOND AND ROGER D. WILLETT

Department of Chemistry, Washington State University, Pullman, WA 99164, USA

(Received 15 November 1991; accepted 10 September 1992)

Abstract.  $4C_6H_9N_2^+$ .  $[Ni_5Cl_{14}(C_2H_3N)_2]^{4-}$ , (I),  $M_r =$ 1308.6, triclinic,  $P\overline{1}$ , a = 8.686 (1), b = 12.483 (2), c =12.933 (2) Å,  $\alpha = 73.09$  (1),  $\beta = 73.65$  (1),  $\gamma = 70.87$  (1)°, V = 1240.4 (3) Å<sup>3</sup>, Z = 1,  $D_x = 1.75$ Mg m<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å, graphite monochromator,  $\mu = 2.670 \text{ mm}^{-1}$ , F(000) = 658, T =295 K, 259 parameters refined to R = 0.0591 and wR= 0.0399 for 1506 unique observed  $[F \ge 3\sigma(F)]$ reflections.  $2C_6H_8N^+$ . $[Ni_3Cl_8(H_2O)_2]^{2-}$ , (II),  $M_r =$ 684.0, triclinic,  $P\overline{1}$ , a = 7.648 (1), b = 8.498 (1), c =9.550 (1) Å,  $\alpha = 85.15$  (1),  $\beta = 83.71$  (1),  $\gamma =$ V = 575.6(2)Å<sup>3</sup>, Z = 1,  $D_x =$ 69.08 (1)°, 1.97 Mg m<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å, graphite monochromator,  $\mu = 3.393 \text{ mm}^{-1}$ , F(000) = 343, T =295 K, 132 parameters refined to R = 0.0246 and wR= 0.0339 for 2177 unique observed  $[F \ge 3\sigma(F)]$ reflections. Both structures are built up from  $[Ni_nCl_{3n+1}L_2]$  oligomers which contain face-sharing NiCl<sub>6</sub> octahedra and are capped on both ends by NiCl<sub>5</sub>L octahedra. Di- $\mu$ -chloride bridges link these oligomers together into the non-uniform chains characteristic of this new  $A_{n-1}[Ni_nCl_{3n-1}L_2]$  family.

**Introduction.** We are reporting the structures of the first two members of a new family of non-uniform nickel(II) chloride chains. Uniform chains of coordination polyhedra, in which symmetrically equivalent polyhedra are typically linked to their neighbors through one, two or three shared ligands, are a familiar motif of inorganic crystal chemistry. Non-

0108-2701/93/050861-05\$06.00

uniform chains, those containing more than one type of coordination polyhedron or more than one type of bridging arrangement, are not uncommon, but are certainly less well known. The greater complexity, both structural and physical, of the non-uniform chain systems discourages the extensive and systematic studies pursued for many uniform chain systems. There is, nevertheless, a sustained interest in nonuniform systems with alternating magnetic properties, such as alternating exchange interactions (Carlin, 1986) or one-dimensional ferrimagnetism (Coronado, Drillon, Nugteren, de Jonghe, Beltran & Georges, 1989).

The title compounds establish a series of nickel halide salts which can be formulated as  $A_{n-1}[Ni_n]$  $Cl_{3n-1}L_2$  where A is a monopositive organoammonium cation, L is a neutral ligand and n is, to date, an odd integer. The two extreme values of n produce uniform chain structures. Infinite n yields an ANiCl<sub>3</sub>type stoichiometry consisting of tri- $\mu$ -chloro-bridged chains of NiCl<sub>6</sub><sup>4-</sup> octahedra as found in the CsNiCl<sub>3</sub> family (Bond, 1990) and n = 1 yields an [NiCl<sub>2</sub>L<sub>2</sub>] stoichiometry consisting of di-µ-chloro-bridged chains of  $[NiCl_4L_2]^2$  octahedra as found in [NiCl<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (Morosin, 1967). Intermediate compounds of the series contain both types of bridging arrangements resulting in oligometic segments of the tribridged CsNiCl<sub>3</sub>-type chain connected by the dichloro bridge of the  $[NiCl_2L_2]$ -type chain. In the two systems reported here, A is a substituted pyridinium

© 1993 International Union of Crystallography